EL-labelings, supersolvability and 0-Hecke algebra actions on posets
نویسنده
چکیده
It is well known that if a finite graded lattice of rank n is supersolvable, then it has an EL-labeling where the labels along any maximal chain form a permutation. We call such a labeling an Sn EL-labeling and we show that a finite graded lattice of rank n is supersolvable if and only if it has such a labeling. We next consider finite graded posets of rank n with 0̂ and 1̂ that have an Sn EL-labeling. We describe a type A 0-Hecke algebra action on the maximal chains of such posets. This action is local and gives a representation of these Hecke algebras whose character has characteristic that is closely related to Ehrenborg’s flag quasisymmetric function. We ask what other classes of posets have such an action and in particular we show that finite graded lattices of rank n have such an action if and only if they have an Sn EL-labeling.
منابع مشابه
On the irreducibility of the complex specialization of the representation of the Hecke algebra of the complex reflection group $G_7$
We consider a 2-dimensional representation of the Hecke algebra $H(G_7, u)$, where $G_7$ is the complex reflection group and $u$ is the set of indeterminates $u = (x_1,x_2,y_1,y_2,y_3,z_1,z_2,z_3)$. After specializing the indetrminates to non zero complex numbers, we then determine a necessary and sufficient condition that guarantees the irreducibility of the complex specialization of the repre...
متن کامل0-Hecke algebra actions on coinvariants and flags
By investigating the action of the 0-Hecke algebra on the coinvariant algebra and the complete flag variety, we interpret generating functions counting the permutations with fixed inverse descent set by their inversion number and major index. Résumé. En étudiant l’action de l’algèbre de 0-Hecke sur l’algèbre coinvariante et la variété de drapeaux complète, nous interprétons les fonctions généra...
متن کاملSheffer posets and r - signed permutations ∗ Richard EHRENBORG
We generalize the notion of a binomial poset to a larger class of posets, which we call Sheffer posets. There are two interesting subspaces of the incidence algebra of such a poset. These spaces behave like a ring and a module and are isomorphic to certain classes of generating functions. We also generalize the concept of R-labelings to linear edge-labelings, and prove a result analogous to a t...
متن کاملOn the Non-existence of an R-labeling
We present a family of Eulerian posets which does not have any R-labeling. The result uses a structure theorem for R-labelings of the butterfly poset.
متن کاملSupersolvable LL-lattices of binary trees
Some posets of binary leaf-labeled trees are shown to be supersolvable lattices and explicit EL-labelings are given. Their characteristic polynomials are computed, recovering their known factorization in a different way.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 101 شماره
صفحات -
تاریخ انتشار 2003